欢迎来到贵阳中宇世纪机电设备有限公司官网!
服务热线:13985540436
简体中文版
网站首页
关于我们
企业文化
资质荣誉
组织机构
宣传视频
新闻资讯
公司新闻
行业动态
产品展示
水泵
不锈钢水箱
成套供水设备
水泵控制系统
远程控制系统
企业风采
问题解答
工程案例
在线留言
行业新闻
联系我们
网站公告:
网站发布的公告标题5555
网站发布的公告标题4444
网站发布的公告标题3333
网站发布的公告标题2222
网站发布的公告标题1111
联系我们
地址:
贵州省贵阳市
当前位置:
网站首页
>>
问题解答
>>
查看详情
问题解答
泵的振动问题分析 (2)
点击次数:
623
发布时间:
2017-03-08 16:27:21
我要订购
服务描述
转子动力学评估
转子动力学需要一个比结构动力学更专业计算机程序,因为它必须包括的影响如:
在轴承,叶轮和密封,作为转速和负荷的函数的三维刚度和阻尼
叶轮和止推平衡装置流体激励力,和
陀螺效应
然而,一些大学和商业组织开发了转子动力学程序,可用的程序包括各种计算子程序,用于轴承和圆形密封(如摩擦环和平衡鼓)的刚度和阻尼系数计算,临界转速计算,激励响应和转子稳定性计算,它包括轴承和密封阻尼和“交叉耦合刚度”的影响(即与运动垂直的的反作用力)。
流体“增加质量”对转子动力学固有频率的影响
围绕转子的流体以三种方式增加转子的惯性:
流体被困在叶轮通道直接增加质量;
由于叶轮和轴材料的存在移动的流体直接对转子系统增加质量,由于转子在流体中的振动,它必须移动这个质量;
以及在紧密间隙中的流体,一定比转子振动加速度更快地加速以保持连续性,并因此可能会增加很多倍于其移动的质量(称为Stroke Effect)。
环形密封“Lomakin效应”对转子动力学固有频率的影响
泵的环形密封(例如,摩擦环和平衡鼓)可对动力学特性影响很大,通过改变转子支撑刚度从而转子固有频率,因此可以避开或导致强一倍和二倍转频激励与一个低固有频率之间可能的共振。
环形密封的刚度和阻尼小部分由挤压油膜和流体动力楔(对滑动轴承设计广为所知)提供。
然而,由于在环形密封中相对轴承来说存在高的轴向对圆周流速比例,由于圆周间隙变化可以在环形间隙产生很大的力,随着转子偏心的发展引起Bernoulli压降,这被称为Lomakin效应,并且是泵的环形密封中最大的刚度和阻尼力产生机制。
Lomakin效应直接取决于通过密封的压降,对于恒定系统流阻它产生Lomakin支撑刚度大约随着转速的平方而变化。
然而,对于大约恒定的系统压头,导致只有很小的Lomakin效应随转速的变化。
其它重要的参数是环形密封长度,直径和间隙;
流体特性是次要的除非涉及非常高的粘度。
然而,流体漩涡可以导致Lomakin效应的显著下降,或者增加伴随它的交叉耦合,重要的是,当交叉耦合反作用力超过阻尼反作用力,它可能引起转子动力学不稳定(如合理设置的转子动力学程序所估算的那样)。
间隙效应是最强的几何尺寸影响,Lomakin效应大约与其平方成反比。
间隙影响很大的物理解释是,它给圆周压力分布(Lomakin效应的原因)通过圆周流动而消除。
任何环形密封腔带有切槽在一定程度具有与增加间隙相同的效果,在这个角度看深槽比浅槽更差。
转子扭转分析
横向转子动力学分析可以通常不包括其它泵系统部件,如驱动机,泵壳体,轴承座,基础或管道,然而,泵轴的扭转振动和各种泵固定结构的振动是取决于系统的,由于振动的固有频率和振型随部件的质量,刚度和阻尼而变化的,不是包含在泵中的那些。
尽管扭振问题再泵不常见,除非由高频VDF激励的电动机驱动,或由往复发动机驱动,复杂的泵/驱动链具有扭振问题的可能性。
这可以通过计算进行检查,包括前几阶扭振临界转速,和系统在起机瞬态,稳态运行,连锁和电动机控制的瞬态过程中对激励的强迫振动响应。
强迫响应应该按照静态的加上振荡的应力之和,在驱动链的最高应力元件,通常是最小轴直径处。
一般计算前两个扭振模型足够覆盖期望的激励频率范围,为此,泵机组必须按照至少三个部分建模:
泵转子,联轴器(包括任何垫块)和驱动机转子。
如果使用柔性联轴器(如盘联轴器),联轴器的刚度将与轴的刚度在一个数量级,必须包含在分析中。
联轴器扭转刚度的良好估计,通常相对独立与速度和稳态扭矩,列在联轴器样本数据中,通常提供给定尺寸的刚度范围。
如果包含齿轮箱,每个齿轮必须单独考虑,按照惯量和啮合比。
如果泵或驱动转子与将转子连接到联轴器的轴相比不是至少几倍的扭转刚度,那么单个轴长度和内部叶轮应包括在模型中,然而对工业泵来说要求最后一步是不常见的。
手工计算前几个扭转固有频率的方法由Blevins给出,然而泵的扭振计算应该包括系统阻尼的影响。
为了以足够精度确定轴的应力,应该使用数字的程序,如Holzer方法,传递矩阵法或有限元分析(FEA)。
最低扭转振型是在泵/驱动系统最常被激起的,这个扭转振型的大部分运动发生在泵的轴上。
这种情况下,主要的阻尼来自泵叶轮,当它由于扭振运动运行在稍高和稍低的瞬时转速时消耗的能量。
这个阻尼的粗略估计公式:
阻尼 = 2x(额定扭矩)x(估计的频率)/(额定转速)^2
为了确定期望的大扭振激励的频率,以及这些频率下发生扭矩值,任何给定转速和流量下的泵的扭矩可以乘以一个单位系数“p.u.”,重要频率下的p.u.系数可从特定系统的电机和控制生产商那里获得,一般是感兴趣的状态下稳定运行扭矩的大约0.01至0.05,峰-峰值。
来自电动机的最重要的扭转激励频率是极数乘以滑差频率(对感应电动机),转速乘以极数,以及转速本身;
泵的不稳定的流体扭矩也存在,频率表现为转速乘以叶轮流道数,强度等于传递的扭矩除以流道数,一般具有的最大值也是在0.01至0.05区间,不在BEP最佳运行点运行和/或叶轮少于4个流道一般具有较高的值。
对于包括变速或VFD的系统,应该特别关注,除了激励频率扫描一个大的范围从而增加发生共振的机会,老式的VFD控制器提供新的激励,表现在电动机转速的各种“控制脉冲”乘数,通常为6X或12X,以及也常为整分数约数。
控制器生产厂商可以预测这些频率及其相关的p.u.系数。
对机组扭转特性的可接受度的判断应该基于在所有运行状态,受迫响应轴应力是否在疲劳极限预留了足够安全系数之下。
对一个仔细分析的转子系统,推荐的最小安全系数是2。
转子动力稳定性
转子动力稳定性指一种现象,即使主动的稳定的激励非常低,具有反应支持力的转子及其系统能够成为自激的,导致可能灾害性的振动水平。
转子动力不稳定性的一个关键因素是交叉耦合刚度,交叉刚度源于在轴承和其它紧密的旋转间隙中建立的流体动力油膜,流体动力油膜具有倾向于将转子推回到其中心位置的有利效果 – 这是典型的流体膜(轴颈)轴承的工作原理。
然而,除此之外,交叉耦合力矢量作用在与运动垂直的方向,与源自流体阻尼的矢量方向相反,因此很多人将交叉耦合刚度理解为负阻尼。
交叉耦合作用对稳定性是非常重要的,如果交叉耦合力矢量变成大于阻尼矢量,振动引起反应力以一种反馈的方式导致不断增加的振动,轴心轨迹不断变大直到产生严重摩擦,或由于大的运动反馈停止。
轴半速涡动是一个在低于一阶非临界阻尼的轴弯曲固有频率下的受迫响应,它是由流体激励力驱动的,产生力的静态压力场以低于转速的某个速度旋转,流体旋转的速度成为涡动速度。
涡动最常见的原因是围绕叶轮前或后侧板,或在轴颈轴承的间隙的流体旋转,这种流体旋转一般是转速的约45%,因为流体在定子壳壁是固定的,在转子表面以转子的速度旋转,这样在旋转间隙建立起大约半速的“库艾特流”分布。
驱动这个涡动的压力分布一般是倾斜的,这样交叉耦合的分量与涡动运动方向相同,并且可能很强。
如果某种原因间隙在一侧减小,例如由于偏心,结果耦合的力进一步增加。
如果流体涡动频率随转速增加而增加,直到涡动位于一个转子很小阻尼的临界转速,交叉耦合力的作用相位相对于对它的反应力成为不稳定的(力导致变形导致更大的力),那么“轴涡动”变为所谓的“轴振荡”,它是很具破坏性的,迅速地磨损掉泵腔内密封所需要的紧密设计间隙。
轴振荡的特征是一旦它开始,所有自激发生在轴的弯曲固有频率,这样振动响应频率“锁定”固有频率。
由于振荡开始于当涡动接近转速的一半,并等于轴的固有频率,正常的1X转速频率频谱和大概圆形的轴心轨迹现在表现出显著的大约0.45倍转速分量,在轨迹上表现为一个环,反映每隔一转一次轨迹脉动。
这种情况下的典型观察是振动“锁定”在固有频率上,导致在振荡开始之后转速升高,振动偏离涡动的恒定百分比转速。
参数共振和分数频率
已经发现,在透平机器中当转子与壳体的定子部件相互作用时,常见一些类型的非线性振动响应,它们一般归结到参数共振类型,超出了本文讨论的范围。
它们可导致大的振动,尽管相对低的驱动力。
一般来讲,这些共振是由轴承支撑松动或在轴承、密封或其它旋转间隙处的摩擦引起的,征状是脉动的轴心轨迹,在转速的整分数倍频,如1/2,1/4等振动较大。
上一服务:
泵的振动问题分析 (1)
下一服务:
没有了
网站首页
关于我们
新闻资讯
产品展示
企业风采
问题解答
工程案例
在线留言
行业新闻
联系我们
贵阳中宇世纪机电设备有限公司 版权所有 联系人:章经理
手机:
13985540436
地址:贵州省贵阳市
技术支持:
尚云云建站
贵阳中宇世纪机电设备有限公司
版权所有 2018-2023
黔ICP备13003689号-2